Species Sensitivity Distribution estimation from uncertain (QSAR-based) effects data.

نویسندگان

  • Tom Aldenberg
  • Emiel Rorije
چکیده

In environmental risk assessment, Species Sensitivity Distributions (SSDs) can be applied to estimate a PNEC (Predicted No-Effect Concentration) for a chemical substance, when sufficient data on species toxicities are available. The European Chemicals Agency (ECHA) recommendation is 10 biological species. The question addressed in this paper, is whether QSAR-predicted toxicities can be included in SSD based PNEC estimates, and whether any modifications need to be made to account for the uncertainty in the QSAR-model estimates. This problem is addressed from a probabilistic modelling point of view. From classical analysis of variation (ANOVA), we review how the error-in-data SSD problem is similar to separation into between-group and within-group variance. ECHA guidance suggests averaging similar endpoint data for a species, which is consistent with group means, as in ANOVA. This exercise reveals that error-in data reduces the estimation of the between species variation, i.e. the SSD variance, rather than enlarging it. A Bayesian analysis permits the assessment of the uncertainty of the SSD mean and variance parameters for given values of mean species toxicity error. This requires a hierarchical model. Prototyping this model for an artificial five-species data set seems to suggest that the influence of data error is relatively minor. Moreover, when neglecting this data error, a slightly conservative estimate of the SSD results. Hence, we suggest including (model-predicted) data as model point estimates and handling the SSD as usual. The Bayesian simulation of the error-in-data SSD leads to predictive distributions, being an average of posterior spaghetti plot densities or cumulative distributions. We derive new predictive extrapolation constants with several improvements over previous median uncertainty log10HC5 estimates, in that they are easily calculable from spreadsheet Student-t functions and based on a more realistic uniform prior for the SSD standard deviation. Other advantages are that they are single-number extrapolation constants and they are more sensitive to small sample size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎A Bayesian mixture model‎ for classification of certain and uncertain data

‎There are different types of classification methods for classifying the certain data‎. ‎All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data‎. ‎In recent years‎, ‎by assuming the distribution of the uncertain data is normal‎, ‎there are several estimation for the mean and variance of this distribution‎. ‎In this paper‎, ‎we co...

متن کامل

Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies

Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based ...

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

Comparison of three Estimation Procedures for Weibull Distribution based on Progressive Type II Right Censored Data

In this paper, based on the progressive type II right censored data, we consider estimates of MLE and AMLE of scale and shape parameters of weibull distribution. Also a new type of parameter estimation, named inverse estimation, is introdued for both shape and scale parameters of weibull distribution which is used from order statistics properties in it. We use simulations and study the biases a...

متن کامل

Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions

BACKGROUND With the growing popularity of using QSAR predictions towards regulatory purposes, such predictive models are now required to be strictly validated, an essential feature of which is to have the model's Applicability Domain (AD) defined clearly. Although in recent years several different approaches have been proposed to address this goal, no optimal approach to define the model's AD h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Alternatives to laboratory animals : ATLA

دوره 41 1  شماره 

صفحات  -

تاریخ انتشار 2013